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1.  
2. Stellar occultations 

 
The basic observation strategy adopted for Titan stellar occultations was the same as that 

employed for ring stellar occultations. Prior to the beginning of the occultation, VIMS obtained a 
16 X 4 high-resolution image cube of the region around the target star, in which the pixel 
containing the star was identified using onboard software. The VIMS IR scanning mirror was 
then set to this pixel location and a continuous series of IR spectra was obtained in 
OCCULTATION mode. In this mode, the pointing remains fixed and the IR channel records a 
spectrum every 20, 40 or 80 msec, depending on the stellar brightness. Every 64 samples, the data 
are briefly interrupted to obtain an instrumental background spectrum. The data are saved in 
standard VIMS “cubes" of 64 X 64 spectra, but in this case there are no implied spatial variations. 
The last 8 channels in each spectrum are replaced with a time stamp, derived from the internal 
VIMS clock and periodically synchronized with Cassini's central SCLOCK system. Unlike ring 
occultations, the data from Titan occultations are not spectrally-summed or edited. 

 
VIMS observed a total of 14 of stellar occultations by Titan, all but one during close flybys of 

the moon. Only two of these failed to return useful data. A complete list is provided in Table 1, 
including the stellar parameters, Cassini sequence, rev number and Titan flyby, approximate 
latitude, spacecraft range and duration, as well as observing mode parameters. 
 

The requirement that VIMS obtain a star-finding cube prior to observing the occultation 
generally restricted Titan observations to ingress occultations, but in a few cases when the event 
geometry and allocated time permitted it was possible to observe both the ingress and egress 
occultations, especially for more distant events such as the RX Lep occultation on rev 228. In the 
case of the a Sco occultation on rev 49 the near-grazing geometry meant that the star never 
completely disappeared but could be tracked successfully throughout the occultation period at 
longer wavelengths. This observation is shown in Fig. 1. This was only possible because 
refraction is relatively unimportant for VIMS Titan occultations, so that the apparent stellar 
position remains almost unchanged throughout the event.  
 

In a few cases, standard IMAGE mode was used rather than OCCULTATION mode, 
generally when it seemed likely that the usual starfinding algorithm might fail. Although only 
small images were obtained (10 X 8 pixels or less), the much lower rate at which the stellar signal 
was sampled makes these data probably useless for scientific analysis. 
 

As for Saturn occultations, VIMS stellar occultations by Titan are affected by both 



differential refraction and molecular absorption, but for Titan we also see the effects of aerosol 
absorption, especially at shorter wavelengths. Aerosol extinction typically scales with wavelength 
as l-n, where for Titan n is ~ 1:5 (Bellucci et al. 2009). Aerosols appear to dominate the 
occultation light curves at wavelengths less than 2 µm, although quantitative models show that it 
is also necessary to include the effects of differential refraction (Bellucci et al. 2009). This is 
illustrated in Fig. 1, where the lightcurve at 1 µm is shown in the upper figure. Molecular 
absorption in Titan stellar (and solar) occultations is dominated by methane, with strong bands 
centered at 3.4, 2.3 and 1.65 µm and weaker bands visible at 1.3, 1.1 and 0.9 µm. Rapid signal 
variations due to refractive scintillation are either absent or very weak compared to those seen in 
VIMS Saturn occultations. They are more apparent at wavelengths greater than ~ 2:5 µm, as 
illustrated in the lower figure in Fig. 1. 
 

Table 1. 
 

 
NOTES: 

1. Stellar diameter. Entries in () are estimated from spectral type and K magnitude. 
2. Approx latitude. 
3. Average S/C - Titan distance. 
4. Image size or obsv’n. mode. 
5. UVIS rider; Observation ID = UVIS-TI-SIGMASAG; star not detected. 
6. Grazing geometry over N pole. Star remains visible beyond 2.7 microns. 
7. Combined into one observation: ID = TI-STELLOCC 
8. Observation ID = TI-STAROCC. 
9. Rider on CIRS LIMBMAP. No spikes. 

10. Peculiar light curve, possibly due to extended haze layers. 
11. Stellar contrast low against sunlit limb. 
12. Irregular baseline & sunlit limb; used CIRS-FP4 boresight. 
13. Some data dropouts & sunlit limb. 
14. Egress occ; observed ‘blind’ in IMAGE mode. 



15. Unstable baseline; sunlit limb; final qube missing? 
16. Distant occ; both ingress & egress occ’ns observed. Ingress limb bright. 
17. UVIS rider, ID = TI-STELLOCC. 

 
Total = 17 occs, including 3 “no data”.      Revised 12 May 2018: PDN. 
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Fig. 1. A grazing occultation by Titan's atmosphere of the star a Sco, observed on rev 
49, with an integration time of 40 ms. The average range to Titan was 6400 km, and the closest 
approach of the star to the limb was at a latitude of ~ 60_ N. The upper panel shows the full data 
set as a 2D grey-scale image, with time on the abscissa and wavelength on the ordinate. The 
gradual reduction of stellar signal with time is largely due to aerosol extinction, which is much 
stronger at shorter wavelengths. The narrow horizontal bands are due to molecular absorption 
by CH4. The lower panel shows the average lightcurve at 0.9-1.0 µm, where molecular extinction 
is unimportant but aerosol extinction is strongest. The lower figure shows a version of this plot 
with the average lightcurve at 2.8-3.0 µm. Some refractive scintillation is visible here. Note that 
the star never completely disappeared at longer wavelengths. 

 



 
As was the case for Saturn stellar occultations, the quality of Titan occultations was severely 

degraded when they were observed against a bright limb; this was the case for five of the VIMS 
Titan occultations. 
 

3. Solar occultations 
 

As described by Brown et al. (2004), the VIMS IR solar port consisted of a small off-axis 
aperture within the primary telescope that intercepted ~1 % of the incident sunlight, and then 
passed this through a chain of 45_ prisms made of ZnSe which further attenuated the signal.1  The 
resulting flux, attenuated by an overall factor of 2 X 10-7, was then passed through the VIMS 
telescope and spectrometer optics in the same fashion as a normal target scene. In order to match 
the alignment of the solar port in the UVIS instrument, and to avoid damaging other sensitive 
optical systems on Cassini by directly observing the Sun, the VIMS solar port looked out in a 
direction 20o away from the main instrument boresight, offset in the -Z direction, towards the high 
gain antenna. 
 
Because the Sun is not a point source as seen by VIMS, solar occultations could not be observed 
in single-pixel mode as were stellar occultations. Our approach was instead to observe solar 
occultations in IMAGE mode, obtaining a continuous series of small IR cubes of the Sun from 
which we could later estimate the solar flux as a function of time and wavelength. Cube sizes 
were either 8 X 8 or 12 X 12 pixels, with integration times of 20 or 40 msec per pixel. A single 
cube was acquired in 2-6 sec, including the necessary background measurements, which was 
generally satisfactory for most Titan occultations. 
 

Unlike the situation with stellar occultations, the spatial resolution of solar occultations is 
usually set by the finite solar angular diameter rather than by the sampling time. At Saturn's mean 
distance from the Sun of 9.5 AU, the solar diameter is ~ 1:0 mrad, or 2 standard VIMS pixels. For 
Titan occultations at typical ranges of D ~10; 000 km the projected solar diameter was ~10 km, 
somewhat less than 1 atmospheric scale height. The large projected size of the solar disk means 
that the refractive scintillations characteristic of stellar occultations are not expected to be seen in 
solar occultations. 
 

VIMS observed a total of 16 solar occultations by Titan, most as ingress/egress pairs. 
All were carried out as riders on observations designed by the UVIS team. Ranges from 
Titan to Cassini varied from 3600 to 20,000 km. A wide range of planetocentric latitudes has 
been probed, from -76_ to +81o, but with only a single near-equatorial solar occultation, on rev 
109. A summary of all VIMS Titan solar occultations is provided in Table 2. In Fig. 2 we 
illustrate a typical ingress/egress pair, in the same format as used for stellar occultations in Fig. 1. 
 

VIMS solar occultations are a useful tool for probing the vertical structure of Titan's 
lower atmosphere, including the nature and spatial distribution or aerosol layers. Analyses of 
several solar occultations have been reported by Bellucci et al. (2009) and Maltagliati et al. 
(2015), who find that it is necessary to include differential refraction, molecular absorption and 
aerosol extinction in order to model the data satisfactorily. At VIMS' longest wavelengths, ~ 5 
µm, the solar signal penetrates almost to the surface of Titan according to these models. At  
 
1. The solar port in the VIS channel worked, in part, by diffusing the solar image along the instrument's spectrometer 
slit. This, combined with partial saturation of the solar spectrum, unfortunately made it impossible to make quantitative 
measurements of the solar flux at visual wavelengths. 
 



shorter wavelengths, aerosols limit the maximum depth of penetration. In addition to methane 
absorptions seen at 0.9, 1.1, 1.3, 1.65, 2.3 and 3.4 µm, some VIMS solar occultations show 
absorption by CO at 4.7 µm. 

 
Given the large angular size of Titan at close approach, it was possible for the main 

VIMS boresight to pass across Titan itself while the solar port was tracking the Sun. This 
happened during four of the Titan solar occultations observed by VIMS, due to an unfortunate 
choice of secondary axis orientations for the spacecraft. In such cases, the instrument measured 
the combined signal from Titan and the Sun, which makes these occultation lightcurves very 
difficult to interpret (Maltagliati et al. 2015).  
 

Table 2. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. A pair of solar ingress and egress occultations by Titan's atmosphere observed on rev 
206, during the flyby designated as T103. The integration time was 30 ms per pixel and the data 
are displayed in the same format used in Fig. 1. In each case, the upper panel shows the full data 
set as a 2D grey-scale image, with time on the abscissa and wavelength on the ordinate, while the 
lower panel shows the average lightcurve at 0.9-1.0 µm. The gradual variation in stellar signal 
with time is due to a combination of differential refraction, which is almost independent of 
wavelength, and aerosol extinction. As in Fig. 1, the narrow horizontal bands are due to 
molecular absorption by CH4. Aerosol extinction is strongest at short wavelengths. Note the 
distinct aerosol layer in the ingress profile. The latitudes of ingress and egress were -66_ and 
+31o, respectively, and the ranges to Titan were 7800 km and 8400 km. 
 
 
 



REFERENCES 
Acton, C. H. 1996. Ancillary data services of NASA's Navigation and Ancillary Information 
Facility. Planetary and Space Science 44, 65-70. 
 
Bellucci, A., Sicardy, B., Drossart, P., Rannou, P., Nicholson, P. D., Hedman, M., Baines, 
K. H., Burrati, B. 2009. Titan solar occultation observed by Cassini/VIMS: Gas 
absorption and constraints on aerosol composition. Icarus 201, 198-216. 
 
Brown, R. H., et al. 2004. The Cassini Visual And Infrared Mapping Spectrometer (VIMS) 
investigation. Space Science Reviews 115, 111-168. 
 
Elliot, J. L. 1979. Stellar occultation studies of the solar system. Annual Review of Astron- 
omy and Astrophysics 17, 445-475. 
 
ESA 1997. The Hipparcos and Tycho catalogues. VizieR Online Data Catalog 1239, 0. 
 
Maltagliati, L., B_ezard, B., Vinatier, S., Hedman, M. M., Lellouch, E., Nicholson, P. D., 
Sotin, C., de Kok, R. J., Sicardy, B. 2015. Titan's atmosphere as observed by 
Cassini/VIMS solar occultations: CH4, CO and evidence for C2H6 absorption. Icarus 248, 1-24. 
	


