Overview of Rev 88 and 91 Enceladus flybys (E5 and E6): into the plume and over the South Pole

Bonnie Buratti, Amanda Hendrix, Rosaly Lopes, and Nora Kelly "The SOST Leadership" Oct. 3, 2008 preview

XM Enceladus Flyby Summary

Date	rev	Speed km/s	Altitude (km)	Orbit Inclination	C/A science emphasis	
12-Mar-2008	61	14.3	50	High	Plume sampling	E 3
11-Aug-2008	80	17.7	50	High	S. pole remote sensing	E 4
9-Oct-2008	88	17.7	21	High	Plume sampling	E 5
31-Oct-2008	91	17.7	196	High	S. pole remote sensing	E 6
2-Nov-2009	120	7.7	96	Low	Plume sampling	E7
21-Nov-2009	121	7.7	1560	Low	S. pole remote sensing	E8
28-Apr-2010	130	6.5	96	Low	S. pole gravity	E9
18-May-2010	131	7	246	Low	Plume solar occultation	E10

Adapted from John Spencer

Note: The Rev 91 flyby (E6) is not targeted.

Trajectory

- Rev 88 involves a passage into the plume to optimize MAPS objectives
- Rev 91 involves a passage over the south pole to investigate the nature and variability of the active areas with ORS instruments

Main scientific objectives (E5)

- Radar scatterometry to determine cm-scale roughness and radiometry to understand the energy balance
- VIMS compositional mapping to determine the identity of volatiles, organics, and minerals, and place them within a geologic context
- MAPS examination of the particle environment at ~20 km from the surface to determine the nature of the material coming from the plumes, its relationship to the E-ring, and the mechanism for its release
- CIRS observations of the warm-up after solar eclipse to determine the heat capacity and textural properties of the regolith
- ISS global and regional imaging to determine global geology, context for other observations, and possible changes
- Search for variability in the plumes and particle environment

Main scientific objectives (E6)

- Radar scatterometry to determine cm-scale roughness and radiometry to understand the energy balance
- VIMS compositional mapping to determine the identity of volatiles, organics, and minerals, and place them within a geologic context; determination of upper limits on the temperature of the plumes
- MAPS examination of the particle environment at ~200 km from the surface to determine the
 nature of the material coming from the surface, its relationship to the E-ring, the mechanism for
 its expulsion, and the size distribution of the particles with distance from the vent.
- ISS meter-scale imaging of the tiger stripes to determine their nature and the mechanism for plume activity; global and regional mapping to determine the geologic history of Enceladus including the existence of possible remnant tiger stripes
- CIRS observations of the warm-up after solar eclipse to determine the heat capacity and textural properties of the regolith; observations of hot spots to determine their temperature and detection of any changes from the previous flyby
- Search for variability in the plumes and particle environment

Rev. 88, 91 CIRS Enceladus Preview

John Spencer, John Pearl, Marcia Segura October 2nd 2008

Rev. 88, 91 CIRS Enceladus Preview

John Spencer, John Pearl, Marcia Segura October 2nd 2008

CIRS_088EN_ENCEL001_PRIME

• Successive FP1 stares, FP3 scans, NAC stares

ISS_088EN_ENCELCA001

Footprint Mode: Body Surface (Lat_Lo Created by ODD (MSS D12.1.1-cl)

- Eclipse disappearance: 19:52
- 19:50 20:06: "Super-resolution" dither of Damascus and Baghdad

CIRS 088EN SECLNX001

- 20:07- 20:31 2-swath scan of south pole at 6 μrad/sec
 - Fill in gaps in spatial coverage, look for time variability
 - 18 26 km resolution

- 20:31-21:02 29-minute stare with FP4 at 88 S, 0 W
- Transition back to wheels occurs during this stare

- 21:03 21:33 30-minute stare with FP3 at 88 S, 0 W
- NAC support image at 21:20

- 21:35 22:00: FP3 global map
- 47 km resolution

CIRS 088EN SECLNX001

- 21:59 22:40: FP1 stare centered on Enceladus, for eclipse reappearance (at 22:23)
 - WAC support image at 22:35
- 22:40 23:09: NAC to Enceladus for other ORS
- 23:12 00:05; FP1 stare centered on Enceladus, for remaining eclipse warmup

Spacecraft Velocity(relative to Target): 15.2423 km/s Target Phase Angle: 72|91

6. Request: CIRS_088EN_SECLNX001_PRIME Target: Enceladus Observation/Footprint Time:(2008 OCT 09) 2008-283T21:59:19.75 WAC support image at 23:40 Target|RA Dec: 229.13 68.63 Sub SC Lat Lon: -62.373 310.769 Footprint Mode: Body Center (Default) Spacecraft-Target Distance: 174779 km Sub Solar Lat Lon: -4.549 9.611 Created by ODD (MSS D13.1-cl)

on: Thu May 1 15:32:32 2008

CIRS_091EN_FP3STARE001_PRIME: Rev 91 Approach

- 13:15 16:03
- Series of FP1 stares, FP3 stares, FP3 scans

ISS_091EN_ENCELCA001 Riders

"Skeet shoot"

• FP3 on Damascus, Cairo

UVIS_091EN_ICYMAP002 Rider

- 17:45 18:05
- Positioned for "gap fill" in high-resolution FP3 mapping of the south polar region

 18:04 - 18:24: FP1 stare at south pole for total south polar heat flow

• Eclipse disappearance at 18:05

• 18:24 - 19:04: FP3 global map, 12 μrad/sec

- 19:04 19:44 FP3 stare at S. Pole
- Include secondary axis turn to NEG_X to Sun

- 19:44 20:14 Pair of global FP3/FP4 scans
- 20:14 21:14 FP1 stare at disk center for eclipse reappearance (at 20:37)

Enceladus Rev 88 and 91 UVIS Goals and Observations

C. Hansen and A. Hendrix 3 October 2008

UVIS Objectives

- UVIS has two goals for these Enceladus flybys
 - Map the state of the volatiles in the near vicinity of Enceladus (oxygen emissions)
 - Rev 88, ICYLIMB, -2 hr to -1 hr, bracketed by two ICYATM's at -12 hr and + 5 hr
 - Rev 91, three ICYATMs at -8 hr, +5 hr, and +21 hr
 - Map the surface reflectivity at ultraviolet wavelengths to characterize new / old terrain via grain size
 - **Rev 91**, ICYMAP at +30 min

Enceladus Observation Suite - Volatiles

- System scans show variable atomic oxygen in Saturn's system
- Localized scans across Enceladus give higher resolution picture of the distribution of oxygen
- Link to highest resolution to characterize the eruptive state
- Execute routinely to monitor Enceladus' activity remotely
- High resolution limb scans

Cassini UVIS image
The Saturn magnetosphere in atomic oxygen emission
2004 DOY 51 -- 92

Comparative spectra

2006 DOY 272

2007 DOY 102

Rev 88 - Volatiles

Limb scan to look for volatiles

Enceladus Volatiles - ICYATM

Rev 91 Surface Reflectivity

ICYMAP of southern hemisphere

UV Spectrum

ICYMAP Example

Start of scan

VIMS

Visual and Infrared Mapping Spectrometer

- Rev 91: VIMS has prime observations that are point and stare at -5 hours and + 4 hours when Enceladus is small.
- Rev 120: has one prime at +4 hours when Enceladus is small.
- VIMS will ride on other ORS observations doing compositional work during these fly-bys, and will search for hot spots >140K.
- VIMS will look for confirmation of weak spectral features such as those due to organics, CO2, ammonia, and other compounds.
- VIMS will also use ice spectral features to determine approximate temperatures less then 140K.
- VIMS will study phase properties and albedo.

Enceladus 5 RADAR Preview

Steve Ostro
Cassini RADAR Team

Oct. 3, 2007 JPL

Radar SL-2 Albedos and Optical Geometric Albedos

INMS Preview of E5, E6 Encounters

9/30/08 Brian Magee

Previous Measurements: E2 to E4

- Histograms depict the summed signal for each encounter above background
- E2- poor pointing, poor sampling, high altitude
- E3- good pointing, sampling and altitude
- E4- dismal pointing, good sampling and altitude
 - Pointing precludes meaningful density calculation, however the unexpectedly strong signal can benefit composition analysis

Impact Dissociation of High Energy Particles

There appears to be a trend of increasing CO vs. CO₂ with speed (energy) of the spacecraft relative to Enceladus.

This trend also appears with an increase in H_2 relative to H_2O .

E5 encounter is set to have a similar speed as E4, so this phenomena can be compared.
Neutral Beam observations should not be affected in this way.

Observation Geometry

- Closest targeted flybys for Cassini
 - E3 on rev 61 (done)
 - E4 on rev 80 (50 km)
 - E5 on rev 88 (21 km)
- Deepest plume penetrations by Cassini
 - E7 on rev 120
 - E9 on rev 130

E5, E6 Preview

• E5

- Optimal pointing for E5 coupled with trajectory relative to the plume source should provide the highest signal and best composition results to date.
- INMS will forego ion measurements to rather perform neutral beam measurements. The aim is to measure neutrals without the 'wall effects' of the closed-source antechamber. Neutral beam measurements have lower sensitivity so results may be limited by low signal-to-noise.

• E6

 Low INMS expectations due to high altitude and poor pointing. However, E4 provided unexpected returns and plume signal can be detected far from the source so useful data is still a possibility.

Enceladus 5 & 6 Preview: RPWS

W. S. Kurth, for the RPWS Team

3 October 2008

RPWS Science Questions

- Is there evidence for local ionization (other than charge exchange) in the plumes?
- What is the flux and size distribution of dust from the geysers?
- How does Enceladus interact with its magnetospheric environment?

RPWS Measurement Objectives

- Measure the thermal plasma environment
 - Electron density from the upper hybrid resonance frequency
 - Electron density and temperature from Langmuir probe measurements (along with other diagnostics)
- Measure plasma waves associated with the magnetospheric interaction with Enceladus
- Measure the flux of micron-sized particles associated with Enceladus and its geysers

Orbit 61 Enceladus Flyby March 12, Day 072, 2008 9×10⁴ 8×10⁴ 10⁻⁹ f_{uh} 7×10⁴ 6×10⁴ 10⁻¹¹ Frequency (Hz) V²m⁻²Hz⁻¹ 5×10⁴ 4×10⁴ 10⁻¹³ -3×10⁴ 10⁻¹⁴ 2×10⁴ 10⁻¹⁵ 1×10⁴ 10⁻¹⁶ 18:50 18:55 19:00 19:05 19:10 19:15 19:20 R_{En} 55.60 38.46 21.31 4.28 13.11 30.24 47.39 132.18 Lon 133.07 133.97 134.87 315.79 316.71 317.63 68.78 68.23 66.79 53.69 -75.29 -72.30 -71.47 Lat LT 2.26 2.26 2.26 2.26 14.26 14.26 14.26

Orbit 80 Enceladus 4 Flyby August 11, Day 224, 2008 10⁻⁹ -9×10⁴ 8×10⁴ 10⁻¹⁰ 7×10⁴ 10⁻¹¹ 6×10⁴ 10⁻¹² Frequency (Hz) V²m⁻²Hz⁻¹ 5×10⁴ Signature of **Dust Impacts** 4×10⁴ 10⁻¹⁴ -3×10⁴ 10⁻¹⁵ -2×10⁴ 10⁻¹⁶ fce 1×10⁴ 10⁻¹⁷ 20:55 20:50 21:00 21:05 21:10 21:15 21:20 R_{En} 68.89 47.80 5.68 15.62 57.81 26.70 36.71 94.97 95.88 96.79 97.70 278.61 279.52 280.44 Lon 61.13 60.69 59.56 49.97 -66.50 -63.98 -63.29 Lat 4.22 16.22 LT 4.22 4.22 4.23 16.23 16.22

Orbit 61 Enceladus 3 2008-03-12 (072) 18:50:00 SCET 2008-03-12 (072) 19:20:00

E5/E6 preview meeting 3 October, 2008

CAPS Enceladus measurements

- Encounter is too fast for actuation ($\sim 20 \text{ s/R}_{\text{E}}$)
 - Full ACT sweep=204 s, minimum (28°) sweep=52 s
- Pointing put neutral ram & corotation in X-Z plane
 - Ion sensors viewed peak of unperturbed or stagnated flow
 - Ion sensors could not observe deflected to the sides
 - Electron data covers 0° to ~110° pitch angle
- 4s (58 km) resolution ion data
- 2s (29 km) resolution for electrons
- On 88EN, IBS (high res. ion sensor) covering 1-67 eV
 - Will observe cold ionospheric population
 - Set tighter limits on degree of stagnation in flow

CAPS overview spectrograms

E5/E6 preview meeting 3 October, 2008

Enceladus – actuator fixed Negative ions also seen at Earth, comets, Titan;

E5/E6 preview meeting 3 October, 2008

Location of cold ionosphere

E5/E6 preview meeting 3 October, 2008

Inferred ion velocity

Properties and implications of the ionosphere

- Densities of 0.2 1.2 cm⁻³
- Energy corresponds to mass 19±2 AMU
 - Less if flow is not completely stagnated
- Heavier ion present in south/near plume
 - Mass of 35 ± 5 AMU
- Negative ions with similar mass also observed
- Global ionosphere from sputtering in (nearly) stagnated flow
- Ions slowly flow out of (nearly) stagnated region & accelerate t
- Cold \Rightarrow Pickup energy is low (< 2 eV)
 - \Rightarrow Near stagnated flow (< 5 km/s, 20% corotation)
- Alfven relation: $|\Delta B| = |B \Delta v / v_A| \sim 40 \text{ nT}$
 - $-\Delta v = 25 \text{ km/s}, B = 330 \text{ nT}, v_A = 208 \text{ km/s}$
 - − ~30 nT reported by MAG
- Requires shielding of convection electric field
 - Implies >30 kA current system (per Alfven wing)
 - Assuming 1 R_E current system, more if current system is larger
- Current system extends beyond 1.5 R_E